This *Graduate Student Handbook* is designed to provide information that will help you in your graduate career. It should be considered supplementary to the more authoritative *Graduate School Policies & Governance*, which are online at http://www.grad.umn.edu/about/policiesgovernance/index.html. We have not included all of the Graduate School rules but have instead focused on the major requirements of our Program in the History of Science, Technology, and Medicine. In the event of any conflict, the Graduate School requirements take precedence. If you find any errors or misleading statements in this Handbook, please call them to the attention of the Director of Graduate Studies (DGS), Mark Borrello.

This *Handbook* is not a substitute for detailed discussions with the DGS and your faculty advisers. You will also find that our web site provides useful information (www.hstm.umn.edu).

The information in this Handbook and other University publications or announcements is subject to change without notice. Important changes will typically be indicated to current students in a variety of ways, but it is important to check occasionally on the Graduate School website to see the university requirements and forms (www.grad.umn.edu).

Special Note: The Graduate School requires that all students be allowed to meet the requirements of the program on record for the year they are admitted. Students already in the program may also elect to meet the complete requirements of a new program put in place after they arrive. Thus, this handbook is designed for students admitted for or after Fall Semester 2007 when the merger between the graduate programs in History of Science and Technology (HST) and History of Medicine (HMed) was fully in place creating the new Program in the History of Science, Technology, and Medicine (HSTM) and also anyone admitted earlier who elects to meet these new requirements. Students may not, however, mix the requirements.

May 2016
Graduate Studies Handbook

History of Science, Technology, and Medicine

I. Introduction

Overview of the Program 1
Brief History of the HSTM Graduate Program 2

II. Advising, Governance, and Community

Choosing your Degree Adviser and Committee 4
Peer Advising 4
Student Liaisons 5
Participation in Governance 5
Community: Colloquium 5

III. Program of Study in Two Tracks

Distribution Requirements for Graduate Degrees 7
Core Courses 7
Survey Requirement: Attendance and Exam 7
Period Distribution Requirement 8
Area Distribution Requirement 8
Research Seminar Requirement 8
Ph.D. Degree Requirements 9
M.A. Degree Requirements: Plan A and Plan B 11

Preliminary Examination 12
Written Exam 13
Oral Exam 13
Review of the Dissertation Prospectus 14
Registration Summary: Need to Register Every Semester 14
Final Year of the Ph.D.: Registration with Graduate School and Defense of the Dissertation 14
Finalizing the Requirements 16

V. Summary of Program Requirements

16

VI. Professional Development

Responsibilities of a Teaching Assistant in the Program 18

VII. Progress toward the Degree and Planning Ahead

Annual Review of Graduate Students (mandatory University policy) 19
What Is Satisfactory Academic Progress? 19
What Is Unsatisfactory Academic Progress? 20
Student Grievance Process 20
Professional Expectations 20
Professional Organizations 21

VIII. Graduate Minor in the History of Science, Technology, and Medicine 21

IX. Financial Aid 22
 University of Minnesota Opportunities 22
 HSTM Program Fellowships and Assistantships 22
 Other Grants and Fellowships 23

X. Resources for Study and Research 23
 Campus Libraries 23
 University Centers 24
 Off-Campus Museums and Collections 25

Appendix A: Courses in the HSTM 27

Appendix B: Summary of Graduate School Policies & Governance 29

Appendix C: HSTM Course Planner Checklists 31
 PhD (Example) 31
 PhD (Blank Form) 32
 MA Plan A (Thesis) 33
 MA Plan B (Courses/Papers) 34

Appendix D: How to … 35
 Part 1: How to Do your Preliminary Exams 35
 Part 2: How to Defend your Dissertation & Graduate 36

Appendix E: Contract for Completion of Work 38
I. Introduction

This handbook is intended to welcome new students to the Program in the History of Science, Technology, and Medicine (HSTM) and to provide a reference for students as they progress through it year-by-year. Graduate study in these historical areas are distinctive from many other academic disciplines in that they are still relatively young fields, are highly interdisciplinary, and prepare students for several career options. Most students entering the HSTM graduate program have had just a few courses, if any, in our field during their undergraduate or graduate studies. For such students there is the exciting prospect of entering a field that possesses a wide variety of approaches and spans many areas of knowledge. Others may come with advanced degrees in other areas or even in one of the subfields, and for those students our programs offer many opportunities to broaden and deepen their knowledge.

In your first year, you will acquire basic knowledge through two core courses (Historiography and Research Methods) that will introduce you to the nature of this interdisciplinary field, its varied methods, and its fundamental questions. Your goal should be to acquire an overview even as you identify those areas of inquiry of most interest to you. Most incoming students have identified a broad area of specialization—the history of biological or natural sciences, the history of technology, the history of medicine, the history of physical sciences, or the study of science in American culture—prior to entering the program. During the first year, too, you should begin to think about (and discuss with your adviser) a more specific area for your dissertation. In your second year your research interests will become more focused and gain depth from supporting courses within and beyond the program. Subsequent years will be devoted principally to specialized research for your dissertation.

Overview of the Program

The Program in the History of Science, Technology, and Medicine is an all-university program that integrates faculty and students from many departments and programs. Each faculty member has a joint appointment in a department in the College of Science and Engineering, the Medical School, or the College of Biological Sciences, and many have graduate appointments in other departments as well, ensuring close association with other related fields. We have particularly strong ties with the Minnesota Center for Philosophy of Science, the Department of History, and the science and engineering departments within which faculty hold tenure. These university and departmental connections are a major source of intellectual stimulation and support for both faculty and graduate students.

Our program is physically dispersed because graduate students have offices in Shepherd Laboratories and Diehl Hall on the East Bank campus; and faculty members have offices in several departments on the East Bank, West Bank, and in St. Paul. We therefore make a significant effort to maintain our strong sense of community. You will get to know your fellow students and faculty through courses, by working together, attending the Friday colloquia, forming special reading groups, working as teaching assistants, and at various social occasions. With only a little effort, it is easy to get to know all the faculty and students in our program. The faculty has an open door policy and members will always be glad to talk to you when they are free.
Brief History of the HSTM Graduate Program

The Program in the History of Medicine (HMed) was inaugurated in 1967 when Leonard G. Wilson joined the faculty of the Medical School as the first Professor of the History of Medicine. His appointment was made possible by a grant from the Hill Family Foundation and an endowment raised by Owen H. Wangensteen, Professor and Chairman of the Department of Surgery. Dr. Wangensteen also raised the initial endowment to found the historical library of biology and medicine that bears his name. In 1969, aided by a grant from the Josiah Macy Jr. Foundation, a second faculty position was added, which has been held in turn by Guenter B. Risse (1969–71), Toby Gelfand (1971–74), John Eyler (1974–98), Jennifer Gunn (1999–2010), and Jole Shackelford (2010 to present). In 1968 the Program began its series of public lectures, which have been held annually ever since. The Program received its first lectureship endowment in 1984 from the Charles E. Culpeper Foundation. Subsequent endowments from other donors have made possible the Dorothy M. Bernstein Lecture in the History of Psychiatry (1999) and the Sally and Bruce Kantar Lecture in the History of Medicine (2000). The Graduate School authorized the Program to grant the Ph.D. in the History of Medicine and Biological Sciences in 1971, and the first Ph.D. was granted to Dale C. Smith in 1979. In 1986 a M.A. degree was added to the Program’s offerings. In 1998 John M. Eyler succeeded Leonard Wilson to the endowed professorship and became Director of the Program and was in turn succeeded by Jennifer Gunn in 2010. A third faculty position was made possible in 2009 by funds provided and allocated by Vice President of the Academic Health Center Frank Cerra, and Dominique Tobbell joined the faculty.

The Program in History of Science and Technology (HST) was inaugurated in 1972, when the university administration committed funds to establish a new program in history of science and technology. Roger H. Stuewer, a historian of modern physics, received an appointment in the Department of Physics as the coordinator of this effort, and subsequently became the founding director of the program. At that time he was given one additional appointment, which went to Alan E. Shapiro, a historian of the physical sciences with a special focus on Newton. In 1974 the Hill Family Foundation (later the Northwest Area Foundation) awarded the program a grant that allowed it to add positions in history of biology and history of technology, teaching assistants, and a secretary. Malcolm Kottler and Edwin T. Layton were appointed to those faculty positions in 1975. In 1979 the Regents granted the program the authority to award graduate degrees, and in 1982 Eda Kranakis received its first Ph.D. In 1981, after a national competition, the Charles Babbage Foundation chose the University of Minnesota as the location for the Charles Babbage Institute (CBI) for the History of Information Processing, which added a major research center to the program. The director of CBI is a tenured member of the HST faculty. Arthur L. Norberg, a historian of technology, became the founding director of CBI. Robert W. Seidel, a historian of modern science and technology who joined the program in 1994, held a five-year term as director of CBI. In 1985 John Beatty succeeded Malcolm Kottler as historian of biology in the program. In 1989, Alan Shapiro succeeded Roger Stuewer as Director of the program. That same year Sally Gregory Kohlstedt, a historian of American science, joined the faculty. In 1991, after a national competition, the National Science Foundation awarded the program, together with the Minnesota Center for Philosophy of Science, a five-year Research Training Grant (RTG) that provided significant resources to the program and enhanced its visibility and stature nationally and internationally. In 1999, 2000, and 2004, three new faculty members—Jennifer K. Alexander, Michel Janssen, and Mark E. Borrello—were hired to replace Ed
Layton, Roger Stuewer, and John Beatty as historians of technology, physics, and biology, respectively. In 2005 Susan D. Jones, a historian of the biomedical sciences, joined the faculty. In 2006 Thomas Misa became the new director of CBI and joined the faculty. In 2008 Sally Gregory Kohlstedt succeeded Alan Shapiro as Director of the program. In 2011 the program got permission to hire a replacement for Alan Shapiro and in 2012 Victor Boantza, a historian of the physical sciences focusing mainly on the 18th century, was appointed. In 2013, Susan Jones succeeded Sally Gregory Kohlstedt as Director of the program.

In 2006 the University of Minnesota Regents approved a merger of the graduate programs in HST and HMed to create a new graduate Program in the History of the Science, Technology, and Medicine (HSTM), which was fully implemented in the fall of 2007. The program would not be able to function without its dedicated program administrators, Julia Knoll (HST) and Mary M. Thomas (HMed). More detailed information about people in the program (including visiting and adjunct faculty members, current graduate students, and alumni) is available on the HSTM website (www.hstm.umn.edu).

II. Advising, Governance, and Community

In a relatively small program such as ours, where students bring diverse undergraduate training and interests, each student’s course of study can be individually planned within the framework of University and Program requirements.

NEW STUDENTS: On arrival, all new students must meet individually with the Director of Graduate Studies (DGS), who will review the general requirements of the program with you, direct you to your temporary adviser (if you have not contacted him/her already), and help you plan course registration for the first term [Check Appendix C for a handy form to be used in program planning]. This meeting will take place in conjunction with the new student orientation. All new students must meet with their temporary adviser before classes start to decide on the course work (including prerequisites) for the first semester. Keep in mind the Program’s course transfer policy: no more than two (2) graduate-level courses previously taken may be applied toward MA or PhD requirements, at the discretion of the Director of Graduate Studies.

You should meet with your temporary adviser regularly during the first year to ensure that you are making satisfactory progress in both your course work and your research. Whenever problems or questions arise during the year, you should feel free to consult with your temporary adviser and any of the faculty individually. You are completely free to make arrangements for formal advising with a person or persons other than the first-year adviser initially assigned to you. You must meet with your temporary adviser again at the beginning of the second semester to discuss your progress and any changes in your proposed course work. Beginning students are also particularly encouraged to interact with other students and faculty to discuss research interests and project plans. This “informal advising” is very important.

After you are acquainted with the graduate faculty and with research opportunities in the program, but no later than the end of your second semester, you should select a permanent degree adviser (see below). Your degree adviser may or may not be the same person as your
temporary adviser, and you should not feel uncomfortable about changing advisers during your first year. Your degree adviser takes over the tasks of the temporary adviser. In addition, the degree adviser helps you shape your research project (for a Master's Plan A or Ph.D. degree), helps you find funds to support your research, and is your primary source of guidance during the remainder of your progress toward the degree. Plan on arranging weekly to monthly meetings with your degree adviser.

CONTINUING STUDENTS: Each semester, you must meet with your adviser to plan coursework and research activities (in conjunction with other activities, such as teaching); weekly to monthly meetings are encouraged. It is important (and your responsibility) to work closely with your adviser. Every student’s needs will be unique. You must also meet with the Director of Graduate Studies (DGS) at the beginning of every academic year and as you approach important milestones (such as preliminary exams).

Choosing Your Degree Adviser and Committee

The selection of an adviser (or co-advisers) is a very important step, one that is typically for a long-term relationship, although it may be changed by either party, without prejudice, if you determine that another faculty member would be a more appropriate adviser. The selection of adviser(s) may occur at any point after your first year and is formalized at the time your entire program is reviewed and your official *Graduate Degree Plan* (http://policy.umn.edu/forms/otr/otr198.pdf) is filed (usually at the beginning of your second year). Students should expect that their adviser will assist them in selecting appropriate courses for their major and minor fields (described below), assist in the selection of a preliminary examining committee, and serve as chair of the Preliminary Oral Examining Committee. The adviser will also work very closely with the student in constructing reading lists and generally preparing for the preliminary examinations.

The adviser(s) will also work with you in planning for the dissertation. It is important to select advisers who are knowledgeable about your proposed field of study. Dissertation advisers assist students in selecting a Final Oral Examining Committee, which may or may not be the same as the Preliminary Oral Examining Committee, because it is selected with attention to the dissertation topic. The advisers also respond to drafts of the dissertation prospectus and to parts of that project as it takes shape. Advisers serve as required Final Oral Reviewers.

At the start of each spring semester, students will meet with their advisers about their progress during the year. They should discuss their goals, research interests, and time lines for completing the degree, as part of the annual review process (see Section VI below). Students in residence must meet regularly with their adviser at other times as well; off-campus students use Skype, email, or phone to communicate regularly with their adviser. To remain in good standing students must be making satisfactory academic progress (see Section VI below) and be in regular contact with their adviser, and have no more than two incomplete courses on the transcript at any one time.

Peer Advising

Because we are a relatively small program, we do not appoint official peer advisers.
However, some of the best advice that you can find with regard to courses, professional activities, and suggestions for living a balanced life will come from your fellow students. The Shepherd Laboratories office has a number of materials that are also of help, including a series of Ph.D. dissertations, copies of reading lists and papers for the preliminary exam, copies of successful proposals to the National Science Foundation and other grant-giving organizations important for the history of science, technology, and medicine. These can all help you develop your own skills in writing successful exams and proposals.

During the course of the year, fellow students give practice talks before presenting a professional paper. It is supportive and instructive to attend these presentations because you will be doing the same soon enough. Some years there are informal reading groups established by students who share some common interest or those who want to keep up-to-date with journal literature. Some years there has been a Dissertation Writing Group (DaWGS) whose members meet to encourage each other and to discuss their chapters as they are drafted and finalized. You are encouraged to take the initiative to form groups, participate in blogs, and do other things that connect you with your fellow graduate students.

Student Liaisons

Graduate students will elect three Student Liaisons to the Directors of HMed and HST. Liaisons will work with our Program Administrators and the Directors on a variety of tasks: allocating desk space for TAs and graduate students; coordinating the Friday lunches and helping with visitors; bringing any graduate student community concerns to the Directors. Liaisons are leaders in the graduate community.

Participation in Governance

The Graduate and Professional Student Assembly (GAPSA, http://www.gapsa.umn.edu) represents all graduate students. The GAPSA advocates for your interests, from curriculum changes to dining services. They organize activities and also run a grant program (https://sites.google.com/a/umn.edu/gapsa/home/grants). HSTM graduate students are represented via the University Council of Graduate Students (COGS, http://www.cogs.umn.edu/). Students interested in serving as representatives to COGS, or the University-wide Educational Policy Committee and Student Academic Grievance Committee should contact the DGS or Directors of the Program to set up a student election for these positions.

Community: Colloquium

The HSTM community converges during our weekly Colloquium. We socialize, do “business,” and most importantly attend scholarly presentations offered by visiting scholars. **FRIDAY AFTERNOONS:** In conjunction with the Minnesota Center for the Philosophy of Science, the HSTM Program sponsors a weekly colloquium during the academic year on Friday afternoons at 3:35. These are on topics of general interest to faculty and students and often are presented by visiting scholars. All faculty and graduate students in residence are expected to attend these, except in cases of conflict with courses/teaching duties or illness.
Coffee and refreshments are served beforehand, at 3:15 pm (first-year graduate students in HSTM are expected to help prepare coffee and cookies for the HSTM colloquia).

FRIDAY LUNCHES: There is also brown bag lunch with visiting Colloquium speakers on the Friday of their visit. Graduate students working in the same field (history of science, history of technology, history of medicine) are expected and all other graduate students are strongly encouraged to attend these lunches, as they are key to professionalization and to building our community. These lunches vary in format, sometimes involving a discussion of a particular reading by the speaker, sometimes a conversation about method or theory, and often a conversation about professional issues.

MONDAY LUNCH, SPRING SEMESTER: The History of Medicine Program sponsors a series of endowed lectures every year. These presentations offer an opportunity for students to hear and to interact with prominent scholars from other academic centers. Lectures are usually on Monday at noon. History of Medicine students are expected and HST students are encouraged to attend these lectures. Coffee and refreshments are provided in Diehl Hall. Brown bag lunches are welcome. In addition the Wangensteen Historical Library sponsors lectures on the history of medicine in spring semester of some years. The schedule of lectures each semester is posted at the HSTM (www.hstm.umn.edu) and HMed (www.med.umn.edu/history) websites. Also watch for seminars of interest in other departments, libraries and museums. Take advantage of the rich intellectual atmosphere at the University and around the Twin Cities.

III. Program of Study in Two Tracks

The Program offers the M.A. and Ph.D. degrees in two tracks: History of Science and Technology (HST) and History of Medicine (HMed). Each of these tracks defines a distinctive set of requirements and, while the degree requirements in the two tracks are similar, there are some differences in the distribution requirements. There are also university requirements (mentioned below). Required forms and guidance are available from Graduate Student Services at http://www.grad.umn.edu/students/gssp/.

Students in either track for the Ph.D. may elect to use courses in the other track as part of a supporting program, which typically includes two or more classes outside the program. However, it is important to note that courses with dual numbers in HMed or HSci may not be so used. You may also do a minor or develop a supporting program entirely outside the Program. The options are wide-ranging, with some students selecting a minor in history, philosophy of science, American studies, social studies of science and technology, or a specific science or engineering field; the list of potential minors is long and available on the Graduate School website. The other option is to put together a unique supporting program that may help you build expertise and background from a range of departments and programs. **You must meet with your adviser and the DGS to assist you in developing your supporting program or declaring your minor.**

Some classes are exclusively within a particular track and a few classes count toward the requirements in both tracks. The classes that cross the track boundary and are cross-disciplinary are indicated by an asterisk on the list in Appendix A; these classes may meet the area and/or research seminar (but not the period) requirements in the other track. For
example, Germ Theory and Modern Medicine, HMed 5035, may count in either track. As the class is typically taught by a member of the faculty in the History of Medicine, it clearly meets the HMed requirement, but in addition, may be used by someone in the HST track to meet that track’s area requirement. The cross-track classes (HSci/HMed) may not be used for a supporting program because they have significant content in the main track selected by a student. These cross-track classes thus build on both the logic of a merged program and the need for distinctive tracks. However, all other classes not designated as a common class, may be selected by a student from the other track as part of a supporting program.

Distribution Requirements for Graduate Degrees

The Program’s distribution requirements are designed to match several goals: (1) chronological and geographic breadth in your understanding of the history of science; (2) capacity to conduct research within the historiographical context of our field; and (3) preparation for pursuing a career in academe, museums, or writing in the history of science, technology, and medicine. For that reason it is important to work closely with the DGS and your adviser as you formulate and then modify your course work plan and participate in all aspects of the program.

Core Courses

Preparation for the field is provided through two core courses. These are the only two courses required of all Ph.D. and M.A. students in both tracks. Students are expected to take these two courses during their first year of study. HSCI 8112/HMED 8112, Historiography of Science, Technology, and Medicine, will introduce you to the theories and some representative schools of interpretation in the history of science, technology and medicine. Since this is a team-taught class involving most of the faculty, you will also become familiar with the various approaches to the history of science, technology and medicine among our faculty. HSCI 8113/HMED 8113, Research Methods in History of Science, Technology, and Medicine is a directed research seminar. In this class you will familiarize yourself with research methods in the field (including the use of libraries, archives, and databases) while working on a research project chosen in consultation with the instructor. At the end of the semester you will present your project in a session to which all students and faculty in the program are invited.

Survey Requirement: Attendance and Exam

The goal is to help you acquire some breadth of knowledge in your chosen field and prepare you to teach the survey course yourself later. During the first year, all Ph.D. and M.A. students are required to attend the lectures of both of the two-semester undergraduate survey courses in their area of concentration: HSCI 1714/1715 for history of technology; HSCI 1814/1815 for history of science; and HMED 3001/3002 for history of medicine. Students will then take a written closed-book exam over one semester of the survey (determined by the faculty) to demonstrate their basic command of the material covered in the survey courses (i.e., command similar to that expected of the undergraduate students taking the course). The examination will be scheduled during the first week of the Fall semester each year (thus
students will normally take this exam at the beginning of the third semester).

Should you fail the exam, you will re-take it after additional preparation, within the first month of the following semester. Students who have already taken similar survey courses before they entered the program can request a waiver of the survey attendance and examination requirement. Such requests will be handled by the DGS in consultation with the instructor of the relevant survey course and the student’s first-year adviser.

Period Distribution Requirement

For the Ph.D. degree, but not for the M.A., there is a *period distribution* requirement. Ph.D students, both in the HST and in the HMed track, are required to take at least one course (3 credits) in both the pre-1800 and post-1800 periods in their chosen track. Students in the HST track will typically meet the pre-1800 required by taking HSCI 8125, Foundations for Research in the Scientific Revolution. This course is required for all students concentrating in history of science and technology, but we encourage students to take other pre-1800 courses beyond their required first course.

Area Distribution Requirement

In the HST track, but not in the HMed track, there is an *area distribution* requirement for both Ph.D. and M.A. students. Students in the HST track must complete a minimum of two courses in each of two fields. There are four fields in the HST track from which to choose:

- History of the Physical Sciences
- History of the Biological Sciences
- History of Technology
- History of Science and Technology in American Culture

Some courses deal with subjects that cross these area boundaries. Students may not use the same course to satisfy more than one area distribution requirement, but a particular course might be used by different students to satisfy different area distribution requirements. Decisions as to whether a course satisfies a particular area requirement will be based in part on the content emphasized in assigned and elected projects and will be made in consultation with your adviser and finalized by the DGS.

Research Seminar Requirement

Ph.D. students are required to complete at least two research papers during seminars or Directed Studies (this can be any seminar) in addition to HSCI 8113/HMED 8113 (Research Methods) in which they write a substantial research paper. Each year a small number of other graduate seminars are offered that are designed and designated to meet this requirement. Talk to the instructor if you would like to use a graduate seminar not explicitly designed and designated as such as a research/writing seminar. The instructor may be willing to supervise a writing project in conjunction with the seminar that would make it qualify as one of your research/writing seminars. Directed studies can also be used to satisfy this
requirement. **A written contract between the student and instructor is required for all Directed Studies (Appendix E).**

Note: A single course may satisfy a period, an area, and/or a research seminar requirement simultaneously.

To help ensure that you gain experience in writing on topics outside your area of expertise, your research papers should in principle be on topics that are both new to you and different for each research seminar and directed study. Exceptions can be made if you want to explore different aspects of the same topic. However, if for a particular research seminar or directed study you want to write a paper on a topic that you have written about before (either before coming to our program or while a student in our program) you need to obtain written permission from the instructor of that seminar or directed study to do so. As part of your request, you need to submit to the instructor copies of all your earlier writings on this topic and a brief statement explaining how the paper you are planning to write relates to those you have already written.

Ph.D. Degree Requirements

The Graduate School requires that candidates have 24 thesis credits and a minimum of 24 coursework credits that meet the specific requirements of their degree program. Our program requires a minimum of 30 credits of coursework satisfying the following requirements:

- **HSCI 8112/HMED 8112 and HSCI 8113/HMED 8113** (6 credits).

- Five additional courses (15 credits) within the selected track. These courses must be chosen to satisfy the following:

 o **Period distribution.** One course (3 credits) in the pre-1800 and one course (3 credits) in the post-1800 period. The pre-1800 course normally required of all students concentrating in history of science is HSCI 8125, Foundations for Research in the Scientific Revolution.

 o **Area distribution.** In the HST track only, two courses (6 credits) in each of two of the four areas specified above. There is no area distribution requirement in the HMed track.

 o **Two research papers from seminars or Directed Studies** in addition to the Research Methods course (HSCI 8113/HMED 8113), in which a substantial research paper is the focus of the semester’s work.

- Six (6) credits from either the track alternative to the one in which you are enrolled or in an outside discipline. You may also elect to take a minor as defined by the department or program that offers it. Thus that program may require that you include particular classes or sequences of classes, so it is essential to meet early with the Director of Graduate Studies in a program that might interest you. These outside classes, selected with your adviser and the HST M DGS, may consist of related technical courses in science or engineering, or of courses in cognate fields such as philosophy of science or history, or in a combination of these. The option you choose will depend on your prior training and future plans. Because you will need outside readers for your dissertation, you will want to
use these classes as an opportunity to find faculty who will be interested in your program.

- Students will sign up for a directed study of three (3) credits with their adviser to prepare the two reading lists and the two papers required for the preliminary exams (see Section IV).

- Twenty-four (24) dissertation credit hours, namely HSCI 8888 or HMED 8888. Full-time students can register for 6-14 dissertation credits per semester. Once these are completed, students must register for at least one credit per semester to remain in good standing. International students, TAs, and RAs must register for HSCI/HMED 8444. Consult the DGS if you have questions about registration. The semester in which you defend your dissertation you must register for one credit.

In addition to these 30 coursework credits and 24 thesis credits, there are the following requirements:

- Survey requirement (no credits). Attending the lectures of the two-semester undergraduate survey in the student’s area of concentration (HSCI 1714/1715 for history of technology; HSCI 1814/1815 for history of science; and HMED 3001/3002 for history of medicine) and passing a written closed-book exam to demonstrate basic command of the content of the second part of this survey.

- Reading proficiency in two languages (beyond English) (no credits). Since much of the primary and secondary literature in the history of science, technology and medicine is in French and German, most students have demonstrated proficiency in these two languages. It is possible to request a substitution of another language; however, the request must be motivated in terms of your scholarly plans. The adviser and DGS together will decide on each exception. As you may need languages for some courses, you are urged to arrive with a reading knowledge of one language and to complete the second one by the beginning of the second year. Typically, you should have completed both languages by the beginning of your third year. You will not be permitted to take the preliminary examinations until you have satisfied the language requirements.

There are four ways to satisfy your language requirements:

- A language certification gained at another college or university may be presented.

- Specific language courses for graduate students offered through the College of Continuing Education (CCE) will satisfy the requirement. French 100: Reading French and German 222: Reading German are offered. Check class schedules for times.

- Students may also take French 1001 and 1002 or German 1001 and 1002, passing each with a B or better grade; students who have some background and elect to take intermediate French or German simply need to have a passing grade (C or better) in 1003 or above. You should contact each language department to determine their prerequisites. The department may have funds to help pay for summer language courses.

- Several language departments offer proficiency examinations in lieu of courses.
These are rumored to be difficult and very few of our students have taken this option. Program faculty may give a reading test, but that is up to each individual member.

- Passing both the written and the oral portion of the preliminary exam. See Section IV below for a detailed description of this requirement. Students will sign up for a directed study of 3 credits with their adviser to prepare the two reading lists and the two papers required for this exam.

M.A. Degree Requirements

The Program offers two types of M.A. degrees. Students seeking an M.A. rather than a Ph.D. degree should work toward a Plan A Master’s degree culminating in writing and defending a Master’s thesis. The University’s credit requirements for a Plan A Masters include: a minimum of 20 graduate-level course credits and 10 thesis credits.

The Plan B Master’s is for students admitted to the Ph.D. track. The University’s credit requirements for a Plan B Master’s include: a minimum of 30 graduate-level coursework credits. A Plan B Master’s is awarded to students upon successful completion of the written portion of the preliminary examination (i.e., to students who have met all requirements for the Ph.D. degree except for the oral portion of the preliminary examination and the dissertation). Students admitted to the Ph.D. program who realize well before they are ready to take the preliminary exam that they will not continue in the Ph.D. program may want to switch to a Plan A M.A. The minimum number of credit hours required for both a Plan A and a Plan B Master’s is 30, as required by the Graduate School for all M.A. degrees.

Plan A

- HSCI 8112/HMED 8112 (Historiography) and HSCI 8113/HMED 8113 (Research Methods) (6 credits)
- 9 additional credits from courses within the selected track. In the HST track this requirement must be met by a minimum of two courses in one of the four areas listed above.
- A minor or supporting program of 6 credits from another discipline or in the other track.
- Reading proficiency in one foreign language, ordinarily French or German (no credits). See under “Ph.D. Degree Requirements” for details.
- Survey requirement (no credits). See under “Ph.D. Degree Requirements” for details.
- 10 M.A. thesis credits.
- Oral defense of the M.A. thesis. The examining committee will consist of two program faculty members and one faculty member from outside the track or program.

Plan B

- 30 credits of course work satisfying the same requirements as the 30 credits of course work required for a Ph.D. See under “Ph.D. Degree Requirements” for details.
- Passing the written portion of the preliminary exam. See Section IV below for a detailed description of this requirement. Students will sign up for a directed study of 3 credits with their adviser to prepare the two reading lists and the two papers required for this exam. (This counts toward the 30 coursework credits.)

- Survey requirement (no credits). See under “Ph.D. Degree Requirements” for details.

- Reading proficiency in one foreign language, ordinarily French or German (no credits). See under “Ph.D. Degree Requirements” for details.

The preliminary examination is the final step in the series of requirements admitting students to candidacy for the doctoral degree. The goal of our program is to educate students in the nature of the field of history of science, technology, and medicine, its methods, and its fundamental questions in preparation for a career in scholarship and teaching. To this end, we want to assure that our students acquire both breadth and depth of knowledge in more than one area.

Successful completion of course work is one way to demonstrate that a student has acquired both a body of knowledge in one or more major areas and a minor/supporting program area and further experience with the methods of the field. The survey requirement is another means of demonstrating breadth in preparation for teaching. Successful completion of two research seminars in addition to HSCI/HMED 8113 should prepare students for writing a dissertation.

Preliminary Examination (See Appendix D, Part 1)

Once you have completed all the course work required for the Ph.D. or are in the final semester of course work, you may begin to prepare for your preliminary examination. By this point, you must have an official Graduate Degree Plan (policy.umn.edu/forms/otr/otr198.pdf) signed and on file with the Graduate School. In addition, you must have an approved preliminary oral examination committee on file with the Graduate School (see below). The members of the examination committee are chosen by the student and the adviser in consultation with the DGS. In general, the committee will consist of the adviser and two other members of the HSTM faculty (inside or major faculty), plus two faculty members from the area of the supporting program or minor (outside or minor program faculty). The preliminary examining committee may have many or all of the same members as the eventual dissertation committee, but this is not required. The preliminary examination committee must be registered with the Graduate School (http://www.grad.umn.edu/students/assignprelimcommittee/index.html). Remember that both the Graduate Degree Plan and the committee registration must be completed well in advance of your expected preliminary exam date.

The purpose of the preliminary exam in general is to demonstrate that you have mastered a body of knowledge within HSTM so that you can formulate significant questions and write analytically; so that you have a solid foundation of historical knowledge on which to base
future research; and so that you are able to engage in significant intellectual discussion around major issues and themes in the field in order to advance ideas about the history of science, technology, and medicine.

The preliminary examination consists of written and oral components. The written requirement (essays) is fulfilled first. The essays are normally submitted at the end of the summer of the second year and no later than the end of the third year.

Written Exam

The student selects two fields in which he or she wants to write his/her essays and two faculty members within HSTM, one for each of the two fields. For each of the two fields, the student, in consultation with the faculty member for that field, compiles a *reading list* of the most essential and influential works in that field. The two faculty members must approve the reading list compiled for the essays in their field (as well as any changes the student may want to make to it in the course of writing the essays). *The student must consult faculty well in advance as to the scope of each list.* Lists approved for past students, on file in the HST graduate student office, may be useful guides.

For the *written component* of the preliminary examination, the student prepares two essays, one based on each of the reading lists. The essays should demonstrate a mastery of the basic content of the field, a sense of how the scholarship in this area has developed, and a critical understanding of the significant issues that have driven the development of that scholarship. The essay in the major area of interest will be 25 pages in length, not including the bibliography, and the second essay will be 15 pages in length. The student is entitled to one round of feedback on a draft of the essay by the faculty member with whom the student has compiled the reading list for that essay. The final versions of both essays should be submitted to the two faculty members that the student selected for the two fields in which he or she wrote these essays. These two faculty members will read the essays within ten to fourteen days. If they agree that one of the essays needs revision before an oral examination can be held, the student has one month to revise and resubmit the essay. If they find both essays unsatisfactory, the student fails the preliminary examination.

During the semester that the student finalizes the reading lists and starts writing the two papers, he or she signs up for a directed study of 3 credits with his or her adviser.

Oral Exam

The oral exam allows the committee to probe the depth of your knowledge: to verify that you can synthesize ideas drawing upon what you have read and written, and that you can think on your feet and express ideas orally--skills needed regularly in the classroom and in responding to other scholars and students.

If the two faculty members to whom the student submitted his or her essays agree that they are satisfactory, the adviser notifies the DGS, who will email the College and Graduate School that the student has passed the written portion of the preliminary exam at which point the oral portion of the examination can be scheduled. *The student must initiate the oral examination scheduling process with the Graduate School here:*
The oral examination normally will take place 2-3 weeks after passing the written requirement, thus allowing time for the Graduate School to process the appropriate paperwork. At the oral examination with all five members of the Preliminary Examination Committee, students will be examined primarily on their essays, but also, where this is relevant to the topics of the essays, on their reading lists and on course work done with faculty members on the committee.

The oral exam may be scheduled at any time, but students should note that they must take it within the first two weeks of the semester if they plan to register for dissertation credits that same semester. Students taking their exam after the start of the semester must first register for HSCI/HMED 8666 “Doctoral Pre-Thesis Credits” before the first day of class in order to avoid a late registration fee. Then after passing the oral exam register for HSCI/HMED 8888 “Thesis Credit: Doctoral” and drop HSCI/HMED 8666.

As explained in Section III, all students who pass the written portion of the preliminary exam thereby earn a Plan B Master’s degree.

Review of the Dissertation Prospectus

Within three months of passing the preliminary examinations, students must submit a dissertation prospectus for discussion by their Dissertation Examining Committee. This committee may be the same as the Preliminary Examining Committee or it may have some change to reflect the particular topics and expertise required for the dissertation; both committees require three faculty members from the track and two outside faculty members.

The presentation and discussion of the prospectus should take place within three weeks of submission of the document to the committee. The oral presentation of the prospectus is an opportunity for the student and the committee collectively to identify strategies for research and writing of the dissertation and to help students prepare successful funding proposals. This discussion is not an exam and will normally take about an hour.

Registration Summary: Need to Register Every Semester

Students must register every semester under federal and university guidelines. Once course work is complete (or if the student is taking one course and needs a minimum registration of six credits for a TA or RA position) and before taking the preliminary oral exam, students may register for HSCI 8666 or HMED 8666 (for 1-6 credits). Students may take these credits in two semesters or summers for up to 12 credits. Departmental consent is required for a third or fourth registration for up to an additional 12 credits. The Graduate School maximum number of credits for 8666 courses is four repetitions or 24 credits. After passing preliminary orals, students must register for 24 thesis credits (HSCI 8888 or HMED 8888) and then register each semester for 1 credit of either HSCI/HMED 8444 FTE: Doctoral or HSCI/HMED 8333 FTE: Master’s or GRAD 999 (no cost, but does not fulfill FTE requirement for visas or student loans, or registration requirements for RA or TA positions). Schedule a meeting with your adviser and/or the DGS if you are not sure about how to register.
Final Year of the Ph.D.: Registration with Graduate School and Defense of the Dissertation

During your final year, you will complete and defend your dissertation and graduate. The dissertation defense is also called the “Final Examination.” At this point, you and your adviser must check to be sure that you have the following forms up-to-date with the Graduate School:

- Registered properly for active status (see the previous paragraph)
- Approved Degree Plan
- Approved Final Examination Committee

The rules for determining your approved Final Examination Committee (at least five members, two from outside the track or program), and the final examination/defense itself are somewhat complicated, so you must read the Graduate School information (links below) carefully and meet with the DGS. The Committee will typically be similar to your preliminary examination committee but it need not be the same. You must register the committee with the Graduate School at http://www.grad.umn.edu/doctoral/assign-doc-final-committee. While you may select Committee members from outside the University, the Program does not pay for their expenses to attend the final examination/defense in person. However, the rules do allow one outside member to attend the final examination/defense via Skype or teleconference. (You must make arrangements with the DGS at least two months before the examination/defense itself to ensure room and technology availability).

Once you have a complete draft of your dissertation, you will submit it to your adviser to read and judge whether it is ready/almost ready for the defense/final examination. At the same time, you must register with the Graduate School by requesting a “Graduation Packet” here: http://www.grad.umn.edu/current-students-graduate-student-services-progress/doctoral. The “Graduation Packet” will lead you through the process of defending your dissertation and submitting it to the University. (See Appendix D, Part 2)

Once you have your adviser’s approval, you must send a fully complete version of your dissertation to the three members of your Committee whom you designated “Reviewers” (two Reviewers will be from the Program, with one from outside). Give them at least three weeks to read your dissertation and decide if it is ready to defend.

Once the three Readers have approved your dissertation, you will need to get all of their signatures on the “Reviewers’ Report” form included in the Graduation Packet. Check the instructions on the form or contact Graduate Student Services and Progress in case you need to include a faxed or electronic signature for a Committee member who is not on campus.

Once the “Reviewers’ Report” form is signed and turned in, you must then send your complete dissertation to the entire committee, again giving them three weeks to read it carefully before your defense date. At any time during this reading process, any member of your Committee can require you to make revisions. Therefore, be sure that you leave at least two months for this “reading and approving” process. How quickly it goes depends on the quality of the dissertation draft and the judgments of the Committee members.

At this same time, schedule the dissertation defense/final examination and format your
dissertation according to the instructions in the Graduation Packet. You must do the scheduling with the Graduate School yourself, at least two weeks in advance of your defense/final exam date. The Graduate School will notify you by email regarding any outstanding final oral exam requirements, and how to fulfill those requirements, and give you the final authorization for your defense date.

The defense/final examination for a doctoral candidate is a major milestone in the candidate’s career and in the life of the Program. Plan to bring your Graduate School paperwork (the Final Oral Examination Form, which your Committee members will need to sign for you to graduate) and a copy of your dissertation for your reference. Typically you invite your family, friends, and members of the Program to attend the first part of the defense (the “public” part). You will give a presentation outlining your dissertation question, methods, place in the historiography, and conclusions, directed to this general audience. After time for questions, you will withdraw along with your Committee for the final examination. In the course of this defense/examination, the committee will focus on asking you questions about your dissertation, including how it makes original contributions to the field. The Committee may suggest or require further revisions of your dissertation prior to graduation. Often the Committee will also discuss how you might revise your dissertation for publication or your future research goals. This is an important opportunity to get the guidance of your whole Committee prior to officially leaving the University.

At the end of the defense/examination, the Committee will ask you to step out of the room temporarily while they discuss your examination and vote. They will then notify you of the outcome, and sign the Final Oral Examination Form. Be sure to make several extra copies of this form prior to turning the original in to the Graduate School (Bruininks Hall 333). One copy goes to the DGS and another to the Program Administrator (Julia Knoll or Mary Thomas).

Finalizing the Requirements

After the successful defense, you are required to provide one digital copy of the final version of your dissertation to the Graduate School. The guidelines for formatting and submitting the dissertation are in your Graduate Packet. Remember, there are strict penalties for failing to submit your dissertation to the University on time (including a requirement that you apply for readmission!), so do not delay. You are also required to provide one unbound copy to the appropriate Program Administrator, either in the History of Science and Technology or in the History of Medicine, to become part of the permanent collection of dissertations completed in the Program. It will be bound by the department, or you may arrange to have it bound. You are required to give a bound copy of the final version of your dissertation to your dissertation adviser(s). It is also customary to offer a copy to other readers, especially those who provided significant assistance.

V. Summary of HSTM Program Requirements

(See also the Graduate School’s Student-Centric Policy Guide at http://www.grad.umn.edu/about/policiesgovernance)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Plan A M.A.</th>
<th>Ph.D.</th>
</tr>
</thead>
</table>

16
<table>
<thead>
<tr>
<th>Time Limits</th>
<th>File Graduate Degree Plan**</th>
<th>Course Distribution Requirements</th>
<th>Core Course Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not more than 5 calendar yrs after initial enrollment</td>
<td>Not more than 8 calendar yrs after initial enrollment</td>
<td>End of 1st / beginning of 2nd yr.</td>
</tr>
<tr>
<td>Course Distribution Requirements</td>
<td>After 12 credits; not later than 3rd semester</td>
<td>2 area courses</td>
<td>HST: 2 period and 4 area courses HMed: 2 period courses</td>
</tr>
<tr>
<td>Core Course Requirement</td>
<td>HSCI/HMED 8112 and 8113</td>
<td>HSCI/HMED 8112 and 8113</td>
<td></td>
</tr>
<tr>
<td>Survey requirement (lectures HSCI 1714/5, HSCI 1814/5 or HMED 3001/2 + exam)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Research Requirement</td>
<td>No</td>
<td>Two writing seminars in addition to HSCI/HMED 8113 and Dissertation</td>
<td></td>
</tr>
<tr>
<td>Minor Courses Required</td>
<td>No</td>
<td>Minimum 6 credits in supporting program or 12 credits in declared minor</td>
<td></td>
</tr>
<tr>
<td>Languages</td>
<td>1: French or German</td>
<td>2: French and German (others by petition)</td>
<td></td>
</tr>
<tr>
<td>Select Preliminary Exam Committee**</td>
<td>N/A</td>
<td>5 members: 3 from “major”, 2 from “outside” track</td>
<td></td>
</tr>
<tr>
<td>Complete Preliminary Written Exams (DGS reports to Graduate School)</td>
<td>N/A</td>
<td>Two reading lists and two essays</td>
<td></td>
</tr>
<tr>
<td>Schedule and Complete the Preliminary Oral Exam**</td>
<td>N/A</td>
<td>Schedule with Graduate School not less than 1 week after passing written</td>
<td></td>
</tr>
<tr>
<td>Prospectus Meeting</td>
<td>N/A</td>
<td>Within 3 months of passing oral exam</td>
<td></td>
</tr>
<tr>
<td>Thesis Credits Required</td>
<td>10 (HSCI/HMED 8777); 24 (HSCI/HMED 8888)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPA</td>
<td>Minimum of 3.3</td>
<td>Minimum of 3.3</td>
<td></td>
</tr>
<tr>
<td>Select the Final Oral Committee**</td>
<td>3 members (2 from major)</td>
<td>5 members: 3 from inside major; 2 from outside major. “Reviewers” must include adviser(s) and 1 from outside major.</td>
<td></td>
</tr>
</tbody>
</table>
Obtain necessary forms from the Graduate School by going online at www.grad.umn.edu/current-students/forms.
VI. Professional Development

Responsibilities of a Teaching Assistant in the Program

Most full-time doctoral students in the Program at some point participate in teaching undergraduate classes. Generally, this involves leading several recitation sections (typically 12 to 25 students) in conjunction with larger lecture classes. Sometimes a TA is assigned to grade papers or otherwise assist faculty who have large classes but do not use sections.

Teaching assistants are expected to attend lectures, prepare for sections, conduct them, grade students’ work in a timely manner, and to assist the instructor in the lecture classes. In addition, they are expected to participate in all TA meetings, turn in all paperwork in a timely fashion, proctor exams, notify the faculty member of any problems, and participate fully in the course to which they are assigned. Every TA must act responsibly as a professional instructor, which includes: arriving to class on time and well-prepared; scheduling regular office hours; and encouraging students in their work. If any responsibility, including meeting with classes, cannot be met, the faculty supervisor or the department chair must be notified in advance. It is important to remember that you represent the entire Program while you are instructing and advising undergraduates.

A 50% teaching assistantship requires 20 hours of work each a week, on average. If you find that your work load varies significantly from that (too little or too many hours), please speak to your supervisor or to the DGS.

The Program requires that students attend orientation sessions for new TAs offered by the Program, the University, and any special meetings called for TAs by the Program. TAs are required to maintain satisfactory academic progress as defined in Section VI and as indicated in their annual review. In addition, the HSTM Program is now required to evaluate each Teaching Assistant every semester to establish whether you “exceed,” “meet,” or “do not meet” instructor expectations. Faculty members are reviewed in this same way. You will have the opportunity to review this evaluation and sign it to indicate that you have reviewed it. If you have concerns about your evaluation that you cannot resolve with the instructor, you should ask to meet with the DGS and/or Director of the Program.

For students who anticipate a future in academe, we encourage participation in the Preparing Future Faculty Program and in other opportunities to learn more about effective teaching. The PFF program is particularly effective in helping students develop teaching portfolios and introduces them to current trends in higher education.

Center for Teaching and Learning Services (http://www1.umn.edu/ohr/teachlearn)

Many of you will hone your teaching skills as teaching assistants within the Program. Occasionally summer courses are offered by ABD (all but dissertation) students. The Center for Teaching and Learning Services offers a series of Teaching Enrichment workshops on instructional design, stimulating discussion, grading, teaching writing, and other topics for teaching assistants and faculty each August. The Center offers consultations, online resources, workshops, and other pedagogical guidance throughout the year.

Preparing Future Faculty Program (http://www1.umn.edu/ohr/teachlearn/graduate/pff)
Through the Center for Teaching and Learning Services, the Graduate School and the University Office of Human Resources sponsors the Preparing Future Faculty program for students interested in a more formal, comprehensive approach to teaching preparation. Students take one or two core courses, have mentors, and receive letters of recognition and certificates for participation.

VII. Progress toward the Degree and Planning Ahead

Annual Review of Graduate Students (mandatory University policy)

Each year during spring semester, the faculty reviews the progress of each of our HSTM graduate students, using this process:

- Students submit a written statement (informally known as the “Brag Sheet”) of their accomplishments over the past year and plans for the coming year, including how they have met or intend to meet the goals stipulated by previous annual evaluations. This is submitted to the adviser by the deadline announced by the DGS.
- Students then meet with their advisers to discuss the Brag Sheet and past evaluations. Students off-campus should Skype, telephone, or email with their advisers.
- Advisers write a summary based on the Brag Sheet and the meeting with the student; this is submitted to the DGS according to deadline and is circulated to all faculty members.
- The entire faculty will then meet to discuss each student’s progress; decide (by majority) on whether each student is making “satisfactory” or “unsatisfactory” progress; and review specific goals for each student in the coming year.
- The DGS writes the formal letter summarizing this discussion, including the designation of “satisfactory” or “unsatisfactory” and each student’s specific goals for the coming year. Students will receive the annual evaluation letter by post. It is the student’s responsibility to be sure that his/her postal address is correct in the University’s database.

What Is Satisfactory Academic Progress?

Continuation in the HSTM Program is contingent on satisfactory academic progress. The best way to assess whether or not you are making satisfactory academic progress is to meet regularly with your adviser, advisory committee, and instructors to assess academic progress informally. This enables you to address concerns early, before they become serious problems.

The following are the requirements for you to be making “satisfactory academic progress.”

This applies to both M.A. and Ph.D. students.

- You must conform to the University’s Code of Student Conduct (www.oscia.umn.edu) at all times. If you have questions, or if you are not sure about something, always ask your adviser, the DGS, or one of the Directors.
- During coursework: To maintain full-time student status, you must complete at least 6 credits (2 courses) per semester for an overall GPA of 3.3 or better. For full-time Ph.D. students, all of your official coursework and your language requirements should be
completed in the first two years (definitely by the end of the first semester of the third year).

- Incompletes: We strongly discourage you from asking instructors for an “incomplete” grade in any course unless serious health or workload circumstances necessitate it. An incomplete request and contract for completion of work must be formally submitted to the instructor. If you must request a grade of “incomplete,” we expect you to finish the work for the course and have a grade submitted the next semester. Never let an “incomplete” grade remain on your transcript.

- You must file your official Graduate Degree Plan (http://policy.umn.edu/forms/otr/otr198.pdf) by the end of your fourth semester in the HSTM Program.

- You need to pass the preliminary oral examination by the end of your third year in the HSTM Program unless the faculty (majority) grants an extension.

- Under normal circumstances, you are expected to be on track to complete the M.A. degree within three years, or the Ph.D. degree by the end of the sixth year, to be making “satisfactory academic progress.”

What Is Unsatisfactory Academic Progress?

At each student’s annual evaluation, students who do not meet the above requirements will be notified that their academic progress is “unsatisfactory.” The evaluation letter will clearly outline the steps the student needs to take, along with deadlines. The student will be given encouragement and opportunity to improve and be informed about potential consequences (such as ineligibility for funding) if progress continues to be unsatisfactory.

Student Grievance Process

Student grievance procedures are posted in Shepherd Labs 152. Disputes and complaints about your academic life should be brought first to your faculty adviser, the DGS, or the Director of the HST or HMed Programs. One of these people may be able to settle the grievance by informal arbitration. If not, or if your concern involves the whole Program, it is their responsibility to direct you to sources of help within the University or to formal grievance procedures (http://www.sos.umn.edu/students/).

Professional Expectations

The graduate student community has traditionally been a cohesive and supportive group. Policy decisions are made by consensus and activities arranged informally. Graduate students individually and collectively assume responsibilities that assist the Program and each other. Three “liaisons” to the HMed and HST Directors, elected by their peers, will coordinate the shared activities and resources of the graduate community.

Graduate students share office space. Each student who is a teaching assistant or who plans to spend considerable time on campus has a desk in the offices on the first floor of Shepherd Laboratories or in Diehl Hall. These desks are distributed, by convention, on the basis of seniority.
There are a number of opportunities on campus to become involved with graduate students from other departments and colleges, to participate in programs, and to participate in governance activities. These include the Council of Graduate Students (COGS) and the Graduate and Professional Student Assembly (GAPSA) (see Section II above).

Professional Organizations

It is strongly recommended that students join one or more of the organizations important to their discipline, namely the *History of Science Society* (HSS), the *American Association for the History of Medicine* (AAHM), and the *Society for the History of Technology* (SHOT). These professional organizations offer discounted student membership rates, and membership includes a subscription to the group’s journal and newsletter. These publications indicate what is happening broadly in the field and offer an opportunity to learn about topical meetings and financial support of various kinds. There are also regional organizations and specialized groups that hold annual or semi-annual meetings that are a wonderful place to meet scholars in the field and to present your own ideas even in the early stages of your graduate study. The major organizations have useful websites that allow you to look for fellowships and grants:

- **HSS**: www.hssonline.org/profession
- **AAHM**: www.histmed.org
- **SHOT**: www.historyoftechnology.org

The *American Historical Association* (www.historians.org) has a comprehensive list of sources, while specialized groups like the *Eighteenth-Century Studies Society* or the *British Society for the History of Science* will have news of much more targeted opportunities.

Many of us also subscribe to *H-Net*, the online humanities network, as a source of information. H-Net’s homepage is www.h-net.org and participation in any of its online listserves is free (although making a contribution to cover local costs is encouraged). H-Sci-Med-Tech regularly circulates information about conferences, archives, travel grants, fellowships, and jobs in these fields.

VIII. Graduate Minor in the History of Science, Technology, and Medicine

Ph.D students who wish to take the graduate minor in the History of Science, Technology, and Medicine are required to take four three-credit courses; M.A. students must take two three-credit courses. The Historiography class (HSCI 8112 or HMED 8112) is strongly recommended, along with other courses that are selected to define a course of study that should have some identifiable focus but also a certain breadth. Students should not plan to take all courses in the minor from the same faculty member.
IX. Financial Aid

University of Minnesota Opportunities

The opportunities vary between the two tracks because they are in different colleges. Some incoming students with outstanding records are eligible for College of Science and Engineering Graduate Student Fellowships, which consist of stipends to cover living expenses, full tuition waivers, and health care for the academic year. The Program faculty nominates a designated number of incoming students for these awards each year shortly after admission decisions have been made. There are also a number of University sponsored Diversity (DOVE) fellowships to which the Program may also make nominations.

For Ph.D. candidates who have passed their preliminary exams and completed all but the dissertation (ABD), the Graduate School offers Doctoral Dissertation Fellowships (DDFs) (www.grad.umn.edu/fellowships/ddf) and Interdisciplinary Doctoral Fellowships (IDFs) (www.grad.umn.edu/fellowships/idf) that provide support for an academic year. Nominations for an IDF are typically made by one of the interdisciplinary centers at the university (e.g., the Minnesota Center for Philosophy of Science). Nomination for a DDF is done through individual graduate programs. Early in the spring semester, the faculty from each graduate program at the university nominates a specified number of students for these fellowships. The allocation for our program is typically one or two. If the number of qualified candidates for a DDF exceeds our allocation, there will be a competition within the program for these nominations. The recipients are decided in a university-wide competition. Among the Graduate School requirements are that the year of student admission is no more than four years prior to the year of application, or two years prior if the student entered with an M.A. degree; i.e., a Ph.D. student nominated for a dissertation fellowship in 2013–2014 could not have entered the program before 2009–2010.

History of Science, Technology, and Medicine Program Fellowships and Assistantships

There are several Endowed Fellowships available through HSTM, some with designated fields of study. These broadly defined fellowships are allocated by decision of the faculty and include the Roger Stuewer Fellowship (history of science) and the Alan Shapiro Fellowship (history of science), the Tomash Fellowship (history of computing), and the Wangensteen Fellowship (history of medicine).

The HSTM program has several teaching assistantships that are allocated through the two tracks. These are assigned based on the terms of the offer at the time of acceptance into the Program and, in no particular order, scholarly accomplishments (published papers, archival and museum contributions), academic achievement (quality of exams and research papers), timely progress toward completion of degree, previous record as a TA, professional activities, and the number of years of previous support. The program works to help PhD students find support for five years, anticipating that three of those five years may be within the Program. Thus, students are also encouraged to apply for teaching appointments in other departments; in past years these have included the writing program, physics and biology departments, and education. As these become available, they are posted at https://employment.umn.edu. Appointment percentages, skill requirements, and wages will vary from department to department.
Teaching opportunities occasionally are available for ABD (those who have finished all requirements but the dissertation) to teach summer or evening classes.

Research assistantships are occasionally available through faculty in the program based on internal research grants or support from agencies like the National Science Foundation. HSTM students have also had success in finding research assistantships outside the program, most recently in the school of public health.

Travel funds in small amounts are available for graduate student travel. Priorities for distributing the funds are: (1) delivery of a paper at a professional meeting, particularly for students on the job market; (2) attendance at a professional meeting; and (3) dissertation research of a preliminary nature (awarded by competition in the spring). Previous awards will also be taken into consideration. To apply for meeting related travel funds, send a brief statement to the Director of the Program of your track outlining the purpose, dates and estimated expenses of the travel. Because the funds are limited, the full amount of travel will generally not be awarded. As of spring 2013, the HSTM program has another travel fellowship, the Kohlstedt Graduate Student Travel Fellowship.

Other Grants and Fellowships

There are only limited external resources available for first and second year graduate students. Two of the most competitive are the National Science Foundation Fellowship and the Javits Fellowships, which must be applied for in the first year and require very high undergraduate GPAs and GRE scores.

Especially as students begin to do research and writing for their dissertations, there are various sources of funding external to the University. Sometimes these are quite specific in terms of the topics, so students should consider what kinds of private and public foundations and institutions might be interested in their project and search imaginatively. Some but not all of these are advertised through professional organizations (listed above), most professional associations provide open access. Your adviser should be able to assist you in locating and applying for these funds. It is important for you to work well ahead of deadlines with your adviser on drafts of your proposals, and that you ask recommenders to write letters for you at least two or three weeks before the deadline.

X. Resources for Study and Research

Our location in a major metropolitan area and a larger research university opens a wide array of possibilities for expanding the classroom experience. Some of these are institutions and opportunities closely connected to our program, but others may require you to be adventurous.

Campus Libraries (www.lib.umn.edu)

- Walter Library, http://walter.lib.umn.edu, on the East Bank of campus is devoted to the physical sciences and engineering. There are also two specialized libraries with holdings related to Walter Library’s in the School of Design (especially Architecture) and the Department of Mathematics.
• The Bio-Medical Library, www.biomed.lib.umn.edu, in Diehl Hall on the East Bank has an extensive collection of journals and books under its topical purview.

• Magrath Library, http://magrath.lib.umn.edu, on the St. Paul Campus, contains materials in the life sciences and agriculture, including USDA documents.

• Wilson Library, http://wilson.lib.umn.edu, on the West Bank, has holdings in the humanities and social sciences. Specialized libraries within Wilson include the Ames Library of South Asia, the East Asia Library, the Map Library, the James Ford Bell Library which is a collection of more than 20,000 rare books, 2,500 maps, and 2,500 manuscripts from the period 1400 to 1800, documenting the expansion of Europe. Wilson Library is also a US Government Document Repository.

• The Elmer L. Anderson Library, http://andersen.lib.umn.edu, on the West Bank houses seven archival collections, including the Charles Babbage Institute (see below), the University Archives and Special Collection and Rare Books, and the Social Welfare History Archives. For a complete list of the University’s special collections see http://special.lib.umn.edu.

• The Bell Museum of Natural History, www.bellmuseum.org, maintains an outstanding art collection including world-renowned wildlife dioramas, prints, paintings, sculpture and wildlife films designed to bring nature to life for museum visitors. Many of the museum's dioramas were painted by Minnesota native Francis Lee Jaques.

• The Charles Babbage Institute: Center for the History of Information Technology, www.cbi.umn.edu, holds archival materials (including company, personal, and institutional records), rare publications and oral histories that document the history and development of information technology. Information technology is defined broadly to include such topics as computing, information processing, hardware and software design developments, software applications, development of standards, networking, the Internet, security and surveillance, and the social and cultural implications of computing. A searchable index of manuscripts and collections is available on-line. CBI also offers the Tomash Fellowship in the History of Information Processing. CBI is known internationally as a must stop for many topics in computing history but its records can also support numerous other historical topics, especially in the post-1930 period.

• The Frederick R. Weisman Art Museum, www.weisman.umn.edu, is located on campus next to the Coffman Student Union and houses an extensive collection of American painting and sculpture as well as large print and photograph collections. The holdings are particularly strong in works from the first three decades of the 20th century. Among these, the University Art Museum boasts the largest collection of Marsden Hartley works in the world. The Alfred Steiglitz circle and WPA work are also well represented. The Museum also holds many works by Minnesota artists and artists connected to the University of Minnesota. Exhibition catalogues from museum showings across the United States are housed in the Museum’s library.

University Centers

The University of Minnesota, as the large and only major research university in the state, has significant resources in its academic and professional colleges and schools. You will want to
explore the often highly respected programs and centers within and beyond the ones that host our faculty members. A few of them with whom our faculty members have close affiliation are mentioned below, but you will want to look for others that have resources and activities that may contribute to your experience here. Examples include the Minnesota Population Center, the Institute for Global Studies, as well as workshop groups in the Department of History and reading groups in American Studies.

- The **Minnesota Center for the Philosophy of Science**, [www.mcps.umn.edu](http://mcps.umn.edu), is housed with the Department of Philosophy in Heller Hall and serves as one of the key programs in the Social Studies of Science and Technology Studies Graduate Minor. The Center has various reading and discussion groups of interest to HSTM graduate students.

- Biology Interest Group (BIG) (www.mcps.umn.edu/groups/biological.html). Contact Mark Borrello for further information.

- Physics Interest Group (PIG) (www.mcps.umn.edu/groups/physics.html). Contact Michel Janssen for further information.

- Early Modern Interest Group (EMIG) (www.mcps.umn.edu/groups/earlyModern.html). Contact Victor Boantza for further information.

- The **Center for Bioethics**, www.ahc.umn.edu/bioethics, works to advance and disseminate knowledge concerning ethical issues in health care and the life sciences. The Center carries out this mission by conducting original interdisciplinary research, offering educational programs and courses, and fostering public discussion and debate often on topics of current interest.

- The **Center for German and European Studies**, http://cges.umn.edu, is one of the nation's top centers for innovative interdisciplinary teaching and research on Germany and Europe. It is a consortium of the University of Minnesota (Twin Cities) and the University of Wisconsin (Madison) that promotes knowledge about Germany and Europe among established and emerging scholars and sponsors a series of summer institutes.

- The **Center for Austrian Studies**, [www.cas.umn.edu](http://cas.umn.edu), serves as a focal point for the study of Austria and Central European lands with a common Habsburg heritage across disciplines in the humanities, the social sciences, the applied sciences, and the fine arts.

- The **Institute for Advanced Study**, http://ias.umn.edu, brings together new work across the humanities. The Institute offices and public spaces in the Nolte Center provide a place where faculty and students can meet informally for discussions with one another and for more structured presentations, concerts and conversations. The IAS also houses the activities of the Humanities Institute, the Center for Medieval Studies, and the Center for Jewish Studies.

Off-Campus Museums and Collections

- The **Bakken Library and Museum of Electricity in Life**, www.thebakken.org, has an extensive collection of instruments relating to electricity and magnetism, many of them displayed in a family-friendly museum. The library houses technical journals dating from
1665 through 1940, manuscripts and rare books, and ephemera. A number of HSTM students and graduates have been employed by the Bakken.

- The *Minneapolis Historical Society and State Archives*, www.mnhs.org, has been collecting and preserving items relating to the history of Minnesota and the old Northwest for 150 years. Collections are not limited to local memorabilia; MHS holds materials relating to the history of medicine and medical practice, the medical device industry, exploration and interaction between indigenous and non-native peoples, labor and commercial history of the region, political activities, and the official records of the state, counties, and many municipalities. There are online catalogues for its book, manuscript, and records collections, and its extensive photograph collection and visual resources database. The MHS also holds the state and federal censuses and offers classes on how to do genealogical and other specialized searching. Its website includes links to a number of historical organizations throughout the state.

- The *Minneapolis Institute of Arts*, http://new.artsmia.org, is a non-profit museum housing objects from diverse cultures ranging from 5,000 BCE to the present. The collection is especially strong in the fine and decorative arts, and an exhibit on design showcases many pieces of interest to historians of technology. A small library holds many hard-to-find publications bearing on the fine arts, decorative arts, and design.

- The *Walker Art Center*, www.walkerart.org, features exhibits in the visual and performing arts, primarily modern, avant-garde, and contemporary work. In addition, its film retrospectives frequently address historical topics and screen historic films.

- The *Hennepin History Museum*, www.hennepinhistory.org, has collections relating to the history of Hennepin County. It has extensive collections of textile handcrafts and historical photographs. It also holds personal papers, business and government documents, and maps, many in the category of “ephemera,” such as business advertisements and schoolwork.

- The *Minneapolis Public Library*, www.hclib.org, has an extensive collection including materials unavailable at the University library. The Library has ten special collections, more than 10,000 digital images, and five special collections maintained by the Minneapolis Athenaeum including the Spencer Natural History Collection, the North American Indians Collection, and the History of Books and Printing Collection.

- The *Science Museum of Minnesota*, www.smm.org, in St. Paul has standing and traveling exhibits as well as an Omnimax theater. The main areas of focus of their Research and Collections Division include archaeology and ethnology; mammalogy, entomology, and ornithology; vertebrate and invertebrate paleontology; and river and stream ecology and watershed biology. A number of HSTM students and graduates have been employed by the Science Museum.

- The *St. Paul Public Library*, www.sppl.org, has an extensive collection of trade and historical publications, and may well hold something the University library does not.
Appendix A

Courses in the History of Science, Technology, and Medicine

The following list of classes includes those that currently exist (September 2010). Most courses belong exclusively in one track. However, given the interdisciplinarity of our faculty members and the overlap of interests as, for example, in biotechnology and medical science, we have some courses, indicated by an asterisk (*), that can be used to meet the area and research seminar requirements (but not the period requirements) in both tracks. These courses may not be used in a supporting program for students in either track.

History of Science and Technology Track

HSCI 4050 Special Topics in the History of Science
HSCI 4060 Special Topics in the History of Technology
HSCI 4111 History of 19th Century Physics
HSCI 4121 History of 20th Century Physics
HSCI 4125 The Nuclear Age
HSCI 4302 History of High Technology Weapons
HSCI 4321 History of Computing
HSCI 4455 Women, Gender, and Science
HSCI 5211* Biology and Society in the 19th and 20th Centuries
HSCI 5242 Darwinian Revolution
HSCI 5244 History of Ecology and Environmentalism
HSCI 5331 Technology and American Culture
HSCI 5332 Science and American Culture
HSCI 5401 Ethics in Science and Technology
HSCI 5411 Art and Science in Early Modern Europe
HSCI 5421 Engineering Ethics
HSCI 5993 Directed Studies
HSCI 5994 Directed Research
HSCI 8112 Historiography of Science, Technology, and Medicine
HSCI 8113 Research Methods in History of Science, Technology and Medicine
HSCI 8124 Foundations for Research in Ancient Science
HSCI 8125 Foundations for Research in the Scientific Revolution
HSCI 8131 Industrial Revolutions
HSCI 8421 Social and Cultural Studies of Science
HSCI 8441 Women in Science: Historical Perspectives
HSCI 8830* Topics in the History of Science, Technology and Medicine
HSCI 8900 Seminar: History of Early Physical Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSCI 8910</td>
<td>Seminar: History of Modern Physical Sciences</td>
</tr>
<tr>
<td>HSCI 8920</td>
<td>Seminar: History of Biological Sciences</td>
</tr>
<tr>
<td>HSCI 8930</td>
<td>Seminar: History of Technology</td>
</tr>
<tr>
<td>HSCI 8940</td>
<td>Seminar: History of Science and Technology in the Americas</td>
</tr>
<tr>
<td>HSCI 8950</td>
<td>Seminar: Science and Technology in Cultural Settings</td>
</tr>
<tr>
<td>HSCI 8993</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>HSCI 8994</td>
<td>Directed Research</td>
</tr>
<tr>
<td>HMED 5035*</td>
<td>The Germ Theory and Modern Medicine</td>
</tr>
<tr>
<td>HMED 8001*</td>
<td>Early History of Medicine to 1700</td>
</tr>
<tr>
<td>HMED 8830*</td>
<td>Topics in the History of Science, Technology, and Medicine</td>
</tr>
</tbody>
</table>

History of Medicine Track

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMED 5002</td>
<td>Public Health Issues in Historical Perspective</td>
</tr>
<tr>
<td>HMED 5035*</td>
<td>The Germ Theory and Modern Medicine</td>
</tr>
<tr>
<td>HMED 5045</td>
<td>The Modern Medical Profession</td>
</tr>
<tr>
<td>HMED 5055</td>
<td>Women, Health, and History</td>
</tr>
<tr>
<td>HMED 5075</td>
<td>Technology and Medicine in Modern America</td>
</tr>
<tr>
<td>HMED 5600</td>
<td>Directed Study</td>
</tr>
<tr>
<td>HMED 5940</td>
<td>Topics in the History of Medicine</td>
</tr>
<tr>
<td>HMED 8001*</td>
<td>Early History of Medicine to 1700</td>
</tr>
<tr>
<td>HMED 8002</td>
<td>History of Medicine since 1700</td>
</tr>
<tr>
<td>HMED 8112</td>
<td>Historiography of Science, Technology, and Medicine</td>
</tr>
<tr>
<td>HMED 8113</td>
<td>Research Methods in History of Science, Technology, and Medicine</td>
</tr>
<tr>
<td>HMED 8220</td>
<td>Current Topics in the History of Medicine</td>
</tr>
<tr>
<td>HMED 8631</td>
<td>Directed Study</td>
</tr>
<tr>
<td>HMED 8632</td>
<td>Directed Study</td>
</tr>
<tr>
<td>HMED 8830*</td>
<td>Topics in the History of Science, Technology, and Medicine</td>
</tr>
<tr>
<td>HSCI 5211*</td>
<td>Biology and Society in the 19th and 20th Centuries</td>
</tr>
<tr>
<td>HSCI 8830*</td>
<td>Topics in the History of Science, Technology and Medicine</td>
</tr>
</tbody>
</table>

Both departments also offer pre-thesis credits (8666), M.A. thesis credits (8777), and Ph.D. thesis credits (8888)
Appendix B

Summary of Graduate School Policies & Governance

www.grad.umn.edu/about/policiesgovernance/index.html

See the Student-Centric Policies pdf, which summarizes policies in a quick-reference format:
http://www.grad.umn.edu/prod/groups/grad/@pub/@grad/documents/policy/studentpolicyguide.pdf

NOTE: Graduate Student policies provide base standards but programs may and often do add additional requirements.

1. Master’s Degree: Performance Standards and Progress
 a. Establishes a five-year time limit for completing master’s degrees, but provides a process for requesting individual extensions and program-wide exceptions for distinctive student populations.
 b. Requires annual progress reviews for all master’s students, with written notification to students who are deemed to be not in good standing.
 c. Continues the requirement of a minimum GPA of 2.8 for coursework included on master’s degree programs for degree clearance (awarding of the degree).
 d. Extends applicability of policy requirements to programs not formerly under the aegis of the Graduate School.

2. Master’s Degree: Completion
 a. Establishes the required conditions and suggested best practices for remote participation in graduate examinations.
 b. Specifies the University as the digital archive of record for deposit of theses and dissertations and requires timely deposit of the thesis following the defense.
 c. Extends applicability of policy requirements to programs not formerly under the aegis of the Graduate School.

3. Doctoral Degree: Performance Standards and Progress
 a. Establishes the required conditions and suggested best practices for remote participation in graduate examinations.
 b. Changes how the completion time limit is defined by establishing an eight-year limit from initial enrollment to degree clearance (awarding of the degree), but provides a process for requesting individual extensions and program-wide exceptions for distinctive student populations.
 c. Establishes a minimum GPA of 3.0 for doctoral students to remain in good standing.
 d. Extends applicability of policy requirements to programs not formerly under the aegis of the Graduate School.
4. **Doctoral Degree: Completion**

- a. Establishes the required conditions and suggested best practices for remote participation in graduate examinations.

- b. Specifies the University as the digital archive of record for deposit of theses and dissertations and requires timely deposit of the dissertation following the defense.

- c. Facilitates reactivation for the purpose of degree clearance for those students who have completed all other degree requirements.

- d. Extends applicability of policy requirements to programs not formerly under the aegis of the Graduate School.
Appendix C

HSTM Course Planner Checklist: PhD EXAMPLE

<table>
<thead>
<tr>
<th>✔ Course #/Area</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSCI 8112</td>
<td>Core: HSCI/HMED 8112 "Historiography" (3 credits)</td>
</tr>
<tr>
<td>HSCI 8113</td>
<td>Core: HSCI/HMED 8113 "Research Methods" (3 credits)</td>
</tr>
<tr>
<td>HSCI 8940</td>
<td>Research Seminar #2 (any course, w/instructor permission) (3 credits)**</td>
</tr>
<tr>
<td>HSCI 5242</td>
<td>Research Seminar #3 (any course, w/instructor permission) (3 credits)**</td>
</tr>
</tbody>
</table>

Hist of Biology
HST only: What is your major “area” field?
(e.g. tech, Am sci, phys, bio)

American sci/cult
HST only: What is your second “area” field?

Note: You need 15 or more total credits from the courses in this section.

✔ HSCI 5244	Major field Course 1 (3 credits)
✔ HSCI 5211	Major field Course 2 (3 credits)
✔ HSCI 5242	(Major field Course 3) (3 credits)
✔ HSCI 5332	Second field Course 1 (3 credits)
✔ HSCI 8940	Second field Course 2 (3 credits)
✔ HSCI 8125	Course that counts as your Pre-1800 req’t (3 credits)**
✔ HSCI 5211	Course that counts as your Post-1800 req’t (3 credits)**

US History >1865
Supplementary Program or Minor (need minimum 6 credits here)

✔ HIST 8802	Suppl/Minor Course 1 (3 credits)
✔ HIST 5910	Suppl/Minor Course 2 (3 credits)
✔ HIST 8960	(Suppl/Minor Course 3) (3 credits)
✔ HIST 8960	(Suppl/Minor Course 4) (3 credits)
✔ HSCI 8993	Directed Studies for Prelims (3 credits)

Language Requirement (must be done by beginning of 3rd year)

✔ French 1003	French
✔ German 222	German
✔ Other language	

Mark/Biology
Exam plan: When? Which fields? Which faculty?

Sally/Am Sci
Fall 2016

** = The same course can count for this and another requirement
Appendix C
HSTM Course Planner Checklist: PhD

<table>
<thead>
<tr>
<th>Course #/Area</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ Core: HSCI/HMED 8112 "Historiography"</td>
<td>(3 credits)</td>
</tr>
<tr>
<td>✔ Core: HSCI/HMED 8113 "Research Methods"</td>
<td>(3 credits)</td>
</tr>
<tr>
<td>✔ Research Seminar #2 (any course, w/instructor permission)</td>
<td>(3 credits)**</td>
</tr>
<tr>
<td>✔ Research Seminar #3 (any course, w/instructor permission)</td>
<td>(3 credits)**</td>
</tr>
</tbody>
</table>

HST only: What is your major “area” field? (e.g. tech, Am sci, phys, bio)

HST only: What is your second “area” field?

Note: You need 15 or more total credits from the courses in this section.

- Major field Course 1 (3 credits)
- Major field Course 2 (3 credits)
- (Major field Course 3) (3 credits)
- Second field Course 1 (3 credits)
- Second field Course 2 (3 credits)
- (Second field Course 3) (3 credits)
- Course that counts as your Pre-1800 req’t (3 credits)**
- Course that counts as your Post-1800 req’t (3 credits)**

Supplementary Program or Minor (need minimum 6 credits here)

- Suppl/Minor Course 1 (3 credits)
- Suppl/Minor Course 2 (3 credits)
- (Suppl/Minor Course 3) (3 credits)
- (Suppl/Minor Course 4) (3 credits)

Language Requirement (must be done by beginning of 3rd year)

- French
- German
- Other language

Exam plan: When? Which fields? Which faculty?

** = The same course can count for this and another requirement
Appendix C
HSTM Course Planner Checklist: MA Plan A (Thesis)

<table>
<thead>
<tr>
<th>✔</th>
<th>Course #/Area</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core: HSCI/HMED 8112 "Historiography" (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommend: HSCI/HMED 8113 "Research Methods" (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected track: HMed or HST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: You need 12 or more total credits from the courses in this section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course 1 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course 2 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course 3 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course 4 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplementary Program or Minor (need minimum 6 credits here)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppl/Minor Course 1 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppl/Minor Course 2 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppl/Minor Course 3 (3 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 M.A. Thesis Credits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language Requirement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French / German / Other language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis committee & target defense date</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

HSTM Course Planner Checklist: MA Plan B

<table>
<thead>
<tr>
<th>✓</th>
<th>Course #/Area</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core: HSCI/HMED 8112 "Historiography"</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Core: HSCI/HMED 8113 "Research Methods"</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Research Seminar #2 (any course, w/instructor permission)</td>
<td>(3 credits)**</td>
</tr>
<tr>
<td></td>
<td>Research Seminar #3 (any course, w/instructor permission)</td>
<td>(3 credits)**</td>
</tr>
<tr>
<td></td>
<td>HST only: What is your major “area” field? (e.g. tech, Am sci, phys, bio)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HST only: What is your second “area” field?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: You need 15 or more total credits from the courses in this section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major field Course 1</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Major field Course 2</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>(Major field Course 3)</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Second field Course 1</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Second field Course 2</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>(Second field Course 3)</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Course that counts as your Pre-1800 req’t</td>
<td>(3 credits)**</td>
</tr>
<tr>
<td></td>
<td>Course that counts as your Post-1800 req’t</td>
<td>(3 credits)**</td>
</tr>
<tr>
<td></td>
<td>Supplementary Program or Minor (need minimum 6 credits here)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppl/Minor Course 1</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Suppl/Minor Course 2</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>(Suppl/Minor Course 3)</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>(Suppl/Minor Course 4)</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Directed Study for preparing Prelim Exam papers</td>
<td>(3 credits)</td>
</tr>
<tr>
<td></td>
<td>Language Requirement (must be done by beginning of 3rd year)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French or German (one)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exam plan: When? Which fields? Which faculty?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>** = The same course can count for this and another requirement</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D, Part 1

HOW TO DO YOUR PRELIMINARY EXAMS:

A concise guide

<table>
<thead>
<tr>
<th>WHO</th>
<th>WHAT</th>
<th>WHEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Finalize lists; check committee (http://www.grad.umn.edu/doctoral/assign-prelim-committee) ; begin writing essays. Register for 3-credit directed study.</td>
<td>About 6 months before exam date</td>
</tr>
<tr>
<td>Student</td>
<td>Check language req’ts; Degree Plan form & committee with Grad School; schedule exam tentatively with your committee members (get on their calendars)</td>
<td>About 2-3 months before exam date</td>
</tr>
<tr>
<td>Two faculty members who oversaw essays</td>
<td>Email the DGS to confirm that the essays are completed and are satisfactory; ask DGS to report to Grad School and Jill Johnson in CSE</td>
<td>At least two weeks before exam date</td>
</tr>
<tr>
<td>DGS</td>
<td>On Grad School website, http://www.grad.umn.edu/current-students-forms/formsdoctoral record Preliminary Written Exam Results. Confirm that the student has passed all requirements (ie languages etc) and send an email to the Grad School and Jill Johnson as a failsafe.</td>
<td>As soon as faculty members have emailed the DGS, and at least two weeks before exam date</td>
</tr>
<tr>
<td>Student</td>
<td>Send your final essays to ALL committee members. It’s a good idea to do practice sessions with all committee members before your exam day, so you have a better idea of what to expect.</td>
<td>At least two weeks before exam date</td>
</tr>
<tr>
<td>Student</td>
<td>Schedule your Preliminary Oral Examination with the Grad School (you actually already scheduled with your committee, just to get on their calendars)</td>
<td>At least one week before your exam date</td>
</tr>
</tbody>
</table>
APPENDIX D, Part 2

HOW TO DEFEND YOUR DISSERTATION & GRADUATE:

A concise guide

<table>
<thead>
<tr>
<th>WHO</th>
<th>WHAT</th>
<th>WHEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Meet with your adviser to plan the remaining time until you defend. Time must be built in for committee members to read the dissertation, for example. Remember: it takes about 3 months to graduate! Check your committee composition here: http://www.grad.umn.edu/doctoral/assign-doc-final-committee</td>
<td>About 6 months before exam date</td>
</tr>
<tr>
<td>Student</td>
<td>Check to be sure all requirements are met http://www.grad.umn.edu/graduate-student-services-progress/final-schedule; schedule exam tentatively with your committee members (get on their calendars); download a “Graduation Packet” here: http://www.grad.umn.edu/current-students-graduate-student-services-progress/doctoral and follow its instructions</td>
<td>About 3 months before exam date</td>
</tr>
</tbody>
</table>
| Student | Be sure you are formatting your dissertation according to the required guidelines: http://www.grad.umn.edu/current-students-graduate-student-services-progress/thesis-submission
Send your completed dissertation to the three “Reviewers” on your committee. Get the Grad School form from the Graduation Packet that these three people must sign to certify that your dissertation is ready to defend.
Email the DGS to be sure s/he knows that you will be finishing. | 2-3 months before exam date |
<p>| Student | Make revisions required by your Reviewers. Collect their signatures on the form and take it to the Graduate Student Services, 333 Bruininks. Then send your dissertation to ALL committee members. It’s a good idea to do practice sessions with all committee members before your exam day, so you have a better idea of what to expect. | Committee members must have the final dissertation at least three weeks before exam date |</p>
<table>
<thead>
<tr>
<th>Student</th>
<th>After your Oral Examination/Defense, get the signatures of your committee members on the Grad School Final Oral Examination form (pick this up in 333 Bruininks Hall before your defense). Make three copies of the signed form (original goes to the Graduate Student Services in 333 Bruininks Hall; 1 copy goes to the Program Administrator; 1 copy goes to the DGS; and you keep one copy).</th>
<th>On exam day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Complete any required revisions and submit your dissertation electronically. Be sure that you give a printed copy of your dissertation to the Program Administrator. To graduate, you must notify the Graduate School early in the month in which you wish to graduate. Submit the form included in your Graduation Packet.</td>
<td>As soon after exam as possible!</td>
</tr>
</tbody>
</table>
Appendix E

Program in the History of Science, Technology, and Medicine

CONTRACT FOR COMPLETION OF WORK
Between Graduate Student and Instructor

DATE:

Instructor:
Student:

CHECK ONE:

☐ Incomplete work from a course (name, #): -

☐ To count course as Research Seminar: (name, #): -

☐ Independent or Direct Study: (name, #): -

SCOPE OF ORIGINAL WORK (be specific: type of assignments, length, etc.)

DEADLINE: ___
Are extensions allowed? YES NO

Signed:

Student Signature, Printed Name, and Date

Instructor Signature, Printed Name, and Date